
Sketch to Image Translation using GANs

Lisa Fan, Jason Krone, Sam Woolf
Tufts University, MA, United States

{Lisa.Fan, Jason.Krone, Samuel.Woolf}@tufts.edu

Abstract

In this work we explore the effect of using a discrim-
inator with 2N output classes (real and fake scores for
each target class) as well as different types of loss func-
tions on the quality of images generated using an image-
to-image cGAN (Conditional Generative Adversarial Neu-
ral Network). Specifically, we experiment with two different
loss functions, the first of which is a fairly standard cross
entropy loss (we call this the 2N loss) and the second at-
tempts to take advantage of extra information provided by
our 2N classification scheme (we call this the penalty loss).
We find GANs trained using our 2N loss and penalty loss
produce images that are of similar if not better quality than
the standard GAN loss.

1. Introduction
Image generation is a valuable tool in the computer vi-

sion field as well as the world outside it. For example,
image generation can be used in unsupervised contexts to
generate training images for sparse categories. Outside of
the field, image generation has many artistic use cases. Ex-
isting work, such as iGAN [9], has shown the success of
using Generative Adversarial Networks (GANs) to create
artwork. In this paper we further explore the use of GANs
to create artwork by applying existing image to image trans-
lation techniques to generate photos from sketches.

The traditional implementations of GANs utilize dis-
criminators that solely output a measurement of the
real/fake quality, or realness, of an input image. These met-
rics seem to work in most contexts. However, in a few
contexts, the input images have the potential to be coupled
with additional information, including aspects such as im-
age class or category. This paper explores the augmentation
of traditional GAN discriminators in order to produce out-
puts that can utilize this extra information. In theory, when
a discriminator can make inferences into the class of an im-
age, one can implement a nuanced loss function that incor-
porates this extra information. Then, both the discriminator
and generator can be more effectively updated based off of

this additional information.
In previous works, discriminators have been supple-

mented to produce output vectors of length N+1 instead of
the traditional realness output. This N+1 vector gives in-
formation on class, as well as realness. Our paper presents
an additional improvement that furthers this idea. We ex-
plore the concept of a discriminator outputting a vector of
length 2N, where the first N entries correspond to the im-
age classes of real images, and the second N entries refer
to the image classes of generated images. As we show, this
additional information allows for the discriminator and gen-
erator to be more efficiently updated, which in turn leads to
better results.

2. Background & Related Work
As we developed a novel strategy for generating im-

ages using cGANS, we were heavily influenced by exist-
ing work. Specifically, the concept and loss function for
a multi-class GAN discriminator is based off of ideas pre-
sented in “Improved Techniques for Training GANs” [6].
Our core network architecture is based upon a network
presented in “Image-to-Image Translation with Conditional
Adversarial Networks” [2].

In the original GAN model proposed by Ian Goodfellow,
the GAN discriminator has a single probabilistic output, and
attempts to decipher whether an input image is real or gener-
ated. Then, a simple loss based off of this sole value is used
to update both the generator and discriminator [1]. As first
proposed in “Improved Techniques” [6], the discriminator
can be restructured so that it can give us more information
than just a simple probability. The authors suggest creating
a discriminator that has output of N+1 values, where N is
the number of classes in the training data set. In this output,
the first N values correspond to the classes, and the N+1th

value corresponds to any generated image. By creating a
discriminator that outputs class information instead of the
probabilistic realness, one is able to calculate a better in-
formed loss, and thus better refine both the generator and
discriminator. In this paper, we take the concept one step
further, attempting to create a more expressive discrimina-
tor by increasing the number of categories in the output of

1



the discriminator. Our discriminator now has an output of
2N classes: N classes for real images, and N classes for gen-
erated images. Our hypothesis is that by utilizing this ex-
tra information, our network will calculate a more nuanced
loss, and then be able to more efficiently improve both the
generator and the discriminator, leading to a more effective
GAN.

The “Image-to-Image” paper [2] presents a novel way to
train a conditional GAN as a solution for image-to-image
translation. Specifically, the network uses a generator to
first encode an image to a high-level representation, and
subsequently decode the representation into a generated im-
age. By training the cGAN on input-output image pairs, one
can train the generator to create images that are, in theory,
indistinguishable from the given output population. Our
novel approach relies heavily on the U-Net architecture of
the generator and the convolutional layer architecture of the
discriminator proposed in this paper.

3. Approach
3.1. Architecture

We use a pre-existing GAN implementation provided
by the authors of “Image-to-Image” [2] as the basis for
our model. The generator has two components: an en-
coder component, which takes the given sketch s and down-
samples it to create a lower dimensional representation
φ(s), and a decoder layer, which takes a vector containing
φ(s) and produces an image. The generator contains skip
connections between the ith layer of the decoder and layer
8 - i of the encoder. The architecture for the generator is as
follows:

• Encoder:
C64-C128-C256-C512-C512-C512-C512-C512

• Decoder:
CD512-CD512-CD512-C512-C512-C256-C128-C64

where C stands for convolution and CD stands for a de-
convolution. All of the convolutions use 4x4 spatial filters
applied with stride 2. Convolutions in the encoder down-
sample by a factor of 2 and in the decoder convolutions up-
sample by a factor of 2. Leaky ReLU activation functions
with a leak of 0.2 are used between layers in the encoder
and standard ReLU activations are used between layers in
the decoder.

All of the convolutions in the discriminator use 4x4 spa-
tial filters with a stride of 2 except for the final layer, which
uses a stride of 1. Leaky ReLU activations with a leak of
0.2 are used in between the convolutional layers. And both
the generator and discriminator are trained using the Adam
update rule [3] with a learning rate of 0.0002 and momen-
tum of 0.5. The discriminator produces a 30x30 output that

corresponds to the realness of different patches of the input
image. This out-of-the-box implementation was used as a
baseline network to compare against our own models.

We modify the “Image-to-Image” [2] discriminator de-
scribed above by adding a fully-connected layer to the end
of the network, which outputs a 2N-dimensional vector of
logits. By including N fake classes in our output, rather
than a single fake class as described in “Improved Tech-
niques” [6], we increase the discriminator’s power to learn
lower level features that differentiate between fake images
of different objects. In contrast, having only a single class
that represents fake images of all object categories forces
the discriminator to look for high level features shared by
all generated images that indicate an image is fake. Our
discriminator has the following architecture:

C128-C256-C512-C1-FC125

The 2N-dimensional output vector has the form:

output = [l1R, . . . , lNR, l1F , . . . , lNF ]

where R denotes a real object class, F denotes a fake ob-
ject class, and N is the number of classes in our dataset. In
this formulation, a class represents a real or fake photo of a
particular type of object.

These logits can be turned into class probabilities using
a softmax:

pmodel(y = j|x) = exp(lj)∑2N
i=1 exp(li)

We use these class probabilities to calculate our 2N loss and
penalty loss, which we describe in the following sections.

3.2. 2N Cross Entropy Loss

We will first discuss the 2N cross entropy loss function,
which is the simpler of the two loss functions used in our ex-
periments. This 2N cross entropy loss function is inspired
by the supervised component of the N+1 loss function out-
lined in the introduction and proposed in “Improved Tech-
niques” [6]. The discriminator loss LD contains two terms.
The first term is a cross entropy loss for a real image x and
sketch s pair taken from our training data distribution pdata
with ground truth class y and target class y. The second
term is a cross entropy loss for the image G(s) generated
from a sketch s with ground truth class y and target class y.
The loss LD is described by the following equation:

LD = −(Ex,s,y∼pdata(x,s,y)[log pmodel(y|x, s, y ≤ N)]

+ Es,y∼pdata(s,y)[log pmodel(y|G(s), s,N < y ≤ 2N)])

(1)

Similarly, the generator loss LG contains two terms. The
first term is a cross entropy loss for the image G(s) gen-
erated from a sketch s with ground truth class y and target

2



class y −N . The target class is y −N in this case because
the generator wants the imageG(s) to be classified as a real
image of the object depicted in sketch s and y − N is the
index of that class in the output vector. The second term
in this loss is the L1 distance between the generated image
G(S) and the ground truth image x weighted by a hyper
parameter λ. This L1 term encourages the generator to pro-
duce images that are close to the ground truth photo. The
loss LG is given by the equation:

LG = −Es,y∼pdata(s,y)[log pmodel(y −N |G(s), s,N < y ≤ 2N)]

+ λLL1(G)

(2)

3.3. Penalty Loss

The 2N cross entropy loss makes use of our 2N-
dimensional output; however, it does not take into account
much of the additional information provided by the 2N rep-
resentation. For instance, it doesn’t differentiate between a
misclassification of the object category from a misclassi-
fication of realness. The penalty loss aims to make use of
this additional information by weighting the cross entropy
terms used in the 2N losses by constant penalty values,
which vary depending on the type of misclassification. For
a class prediction ŷ with target class y our penalty function
pen(y, ŷ) is as follows:

pen(y, ŷ) =


a; obj(y) = obj(ŷ), is-fake(y) 6= is-fake(ŷ)
b; obj(y) 6= obj(ŷ), is-fake(y) = is-fake(ŷ)
c; obj(y) 6= obj(ŷ), is-fake(y) 6= is-fake(ŷ)

where obj() returns the type of object represented by
the given class, is-fake() determines if the given class
represents a fake image, and a, b, c are hyper parameters
that can be chosen in cross validation. Using this penalty
function we define our discriminator loss LD to be:

LD = −(Ex,s,y∼pdata(x,s,y)[log pmodel(y|x, s, y ≤ N)]

× pen(y, ŷ)
+ Es,y∼pdata(s,y)[log pmodel(y|G(s), s,N < y ≤ 2N)]

× pen(y, ŷ))
(3)

Our generator also weights the cross entropy term by the
output of the penalty function and is given by the equation
below. Note that we pass y − N into the penalty function
as the target class for the generated image G(s) because the
generator wants the image to be classified as a real image of
the object depicted in sketch.

LG =

− Es,y∼pdata(s,y)[log pmodel(y −N |G(s), s,N < y ≤ 2N)]

× pen(y −N, ŷ) + λLL1(G)

(4)

Figure 1: Examples of sketch-photo pairs. The bottom row
displays examples of photos cropped using the segmenta-
tion mask.

4. Experiment
4.1. Dataset

We used the Sketchy Database 1, a large-scale collection
of sketch-photo pairs created by Georgia Tech to perform
image retrieval using deep learning. This database contains
12,500 images from a subset of 125 categories from Ima-
genet. The creators asked participants on Amazon Mechan-
ical Turk to sketch the target object in the images, so that
each image ended up with about 5 hand-drawn sketches for
a total of 75,471 sketches in the final dataset. We eliminated
10,918 sketches that the creators had marked as ambigu-
ous, erroneous, having an incorrect pose, or including envi-
ronment details. Our final training size was 43,020 sketch-
photo pairs.

4.2. Image Segmentation

During preliminary testing of our cGAN sketch-to-photo
network, we noticed a consistent issue with our output im-
ages. As our image output population is comprised en-
tirely of photographs, the images often have cluttered back-
grounds. We surmised that often, our generator is learning
to emulate the background instead of focusing on the re-
quested object. In the class of airplane, this background
emulation is not a problem, as here, most photo back-
grounds are blue and uniform. The background becomes
a greater issue in classes such as eyeglasses, where the im-
age is cluttered with faces, hair, and other distracting ele-
ments. We hypothesized that by cropping our image set to
only include the key object, we will see a much higher qual-
ity in the generated images.

In order to create a segmentation mask for our dataset,
we adapted the findings proposed in “Fully Convolutional
Networks for Semantic Segmentation” [4], using models
created in “Deep Residual Learning for Instrument Segmen-
tation in Robotic Surgery” [5]. This allowed us to utilize

1http://sketchy.eye.gatech.edu/

3

http://sketchy.eye.gatech.edu/


Figure 2: Images generated during training of penalty loss model. Successful generations on the left, unsuccessful generations
on the right.

a model trained on the PASCAL VOC Image Segmenta-
tion Dataset. This model used 25 classes for segmentation,
which limited the quantity of images we were able to effec-
tively crop. By implementing the segmentation mask model
on the Sketchy Database, we were able to produce a dataset
with 15 object classes and over 9,000 coupled sketches and
cropped images (see Figure 1). Due to time constraints, we
only trained the baseline model with this segmented dataset.

4.3. Class Conditional Generator

In addition to our two proposed loss functions, we con-
ducted an experiment in which we gave the target class as
a conditional to the generator. We found that the crude
sketches in our dataset often shared key features across
classes. For example, sketches with a striped pattern often
generated a “zebra-like” image with white and black stripes
regardless of the rest of the sketch. By explicitly giving
class information to the generator, we hoped to produce im-
ages that were more closely related to the class the sketch
was based on.

We appended a one-hot encoding of the class to the vec-
tor produced at the end of encoding the input image. This
modified vector was then decoded by the generator as in the
above architecture to produce an image. Due to time con-
straints, we only trained the class conditional generator with
the baseline loss functions.

4.4. Evaluation Methods

The state of the art for evaluating Generational Adver-
sarial Networks is still being developed. We explore three
different quantitative evaluation techniques to evaluate our
models.

First, our implementation of this 2N output discriminator
has the handy feature that it can double as a classifier. This
is in contrast to a typical GAN discriminator that only out-
puts a realness classification. Utilizing this idea, we evalu-
ated the accuracy of our trained discriminator as a classifier

on real photos.
Next, we used the Inception score method introduced in

[6], which applies a pre-trained Inception Network [7] to
each generated image and computes the conditional class
distribution. The distribution is expected to have low en-
tropy for a single image, since we expect realistic images
to be classified confidently by the network. The method
also expects the marginal distribution across all generated
images to be high, since the generated images ought to be
varied from one another. These distributions are compared
using KL-divergence, so that a higher Inception score in-
dicates more realistic images. Previous work has found
that the score for real images range from around 11.0 to
26.0, while scores reported for generated images range from
around 8.0 to 9.0 [6, 8].

Finally, while the Inception score method is suitable
for quantifying the realness of images generated by non-
conditional GANs, it does not evaluate how competent a
conditional generator is in generating class conditional im-
ages. To do so, we apply a pre-trained Inception Network to
our generated images, and see whether the network is able
to predict the image’s conditional class. We calculate ac-
curacy from the Top 1 and Top 5 classes predicted by the
Inception Network.

4.5. Results

Subjectively observing our generated images, we saw
that our models generated a variety of images. See Figure 2
for some examples of good and bad generated images. We
found that categories that had little background noise (like
airplane), showed the target object in a consistent shape
or pose (like mushroom), or had consistent features such
as color or texture (like strawberry) often generated bet-
ter images than noisy, inconsistent categories (like musical
instruments and animals). We also found that training on
the segmented images successfully generated many images
with similar shape to the target object. To see examples of

4



Model Accuracy
2N Loss (50k steps) 26.98%
Penalty Loss (50k steps) 29.09%
Penalty Loss (134k steps) 10.26%

Table 1: Accuracy when classifying validation photos using
the standalone discriminator.

Model Mean Std Dev
Ground Truth Photos 74.81 1.40
Baseline Model 5.26 0.16
Class Conditional Generator 4.25 0.07
2N Loss Model 6.11 0.11
Penalty Model 6.20 0.10
Segmented Photos 13.33 0.90
Trained on Segmented Photos 5.96 0.25

Table 2: Inception scores for various models.

images generated by all of the models, see Figure 3
To evaluate the discriminator as a standalone classifier,

we classified 10,809 validation photos with the trained dis-
criminators using the 2N loss and the penalty loss. The
2N loss discriminator was run for 50,000 iterations, and we
used two penalty loss discriminators that trained for 50,000
iterations and 134,000 iterations respectively. See Table 1
for results. We were unable to compare these results to the
baseline model because its loss function does not produce
an output with class information. The results show that the
accuracy decreases dramatically after training the penalty
loss model for longer. We believe this is due to the real
photos being misclassified as fake. Since we wish to test
the discriminator as a classifier only on real photos, future
work will classify images based on the first N elements of
the output, which are the elements representing real class
scores.

We computed the Inception score on 10,809 validation
photos, the images generated from those sketch-photo pairs,
1,560 segmented validation photos, and the images gener-
ated from those sketch-segmented photo pairs using the five
models explained above, each trained for 50,000 iterations.
See Table 2 for results. While the Inception scores for our
models are lower than scores previously reported by other
papers due to the fewer training iterations, we see that the
models using 2N loss and penalty loss slightly outperform
the baseline model.

Results from classifying our generated images using an
Inception network can be see in Table 3. While the low
accuracy shows that there is still much room for improve-
ment, since Imagenet has 1000 categories, our models are
still being classified at a rate better than random. We see

Model Top 1 Top 5
Ground Truth Photos 71.90% 79.04%
Baseline Model 0.83% 2.36%
Class Conditional Generator 1.05% 3.13%
2N Loss Model 0.48% 1.90%
Penalty Model 0.85% 2.44%
Segmented Photos 40.58% 60.51%
Trained on Segmented Photos 1.99% 4.42%

Table 3: Top 1 and Top 5 Accuracies for classifying gener-
ated images using Inception network.

higher accuracies for the class conditional generator model
due to the generator explicitly receiving class information.
We also see higher accuracies for the model trained on seg-
mented photos, since that model excels in generating im-
ages that have shapes similar to the target object.

5. Conclusion
The results in this paper suggest that using a 2N class

discriminator for cGANs has great promise, as these net-
works show results that are competitive with previously pro-
posed methods. More work needs to be done to fully under-
stand the potential of this approach. Additionally, this pa-
per demonstrates the possibility of generating photographic
images from an input of hand drawn sketches. We feel
that both our understanding of the model and the quality
of the generated photos would benefit from three clear next
steps: implementing a conditional version of the N+1 class
discriminator proposed in “Improved Techniques for Train-
ing GANs” to use as a baseline, training our models for
longer (about 200 epochs), and learning penalty values for
the penalty loss via cross validation. We hope that this work
sparks interest in both using GANs to augment sketches and
experimenting with a 2N class discriminator.

References
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative ad-
versarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[2] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-
image translation with conditional adversarial networks. arXiv
preprint arXiv:1611.07004, 2016.

[3] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[4] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. arXiv preprint
arXiv:1605.06211v1, 2016.

[5] D. Pakhomov, V. Premachandran, M. Allan, M. Azizian, and
N. Navab. Deep residual learning for instrument segmentation
in robotic surgery. arXiv preprint arXiv:1703.08580, 2017.

5



[6] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans.
arXiv preprint arXiv:1606.03498, 2016.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2818–2826, 2016.

[8] D. Warde-Farley and Y. Bengio. Improving generative adver-
sarial networks with denoising feature matching. In Proceed-
ings of the International Conference on Learning Representa-
tions (ICLR), 2017.

[9] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.
Generative visual manipulation on the natural image mani-
fold. In European Conference on Computer Vision, pages
597–613. Springer, 2016.

6



Figure 3: Examples of inputs and outputs of the various models. Each row corresponds to a sketch. The columns, from left
to right, correspond to: 1. Input Sketches; 2. Target Photos; 3. Segmented Target Photos; 4. Baseline Model; 5. Class
Conditional Generator; 6. 2N Loss Model; 7. Penalty Loss Model; 8. Trained on Segmented Photos.

7


